

 Navigation

 	
 index

 	overloading stable documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/overloading/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/overloading/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	overloading stable documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 README.html

 Navigation

 		
 index

 		overloading stable documentation »

overloading.py

Function overloading for Python 3

overloading is a module that provides function dispatching based on the types and number of runtime arguments.

When an overloaded function is invoked, the dispatcher compares the supplied arguments to available function signatures and calls the implementation that provides the most accurate match.

Features

		Function validation upon registration and detailed resolution rules guarantee a unique, well-defined outcome at runtime.

		Implements function resolution caching for great performance.

		Supports optional parameters (default values) in function signatures.

		Evaluates both positional and keyword arguments when resolving the best match.

		Supports fallback functions and execution of shared code.

		Supports argument polymorphism.

		Supports classes and inheritance, including classmethods and staticmethods.

First example

Sample code without overloading:

class DB:

 def get(self, *args):
 if len(args) == 1 and isinstance(args[0], Query):
 return self.get_by_query(args[0])
 elif len(args) == 2:
 return self.get_by_id(id=args[0], model=args[1])
 else:
 raise TypeError(...)

 def get_by_query(self, query):
 ...

 def get_by_id(self, id, model):
 ...

The same thing with overloading:

class DB:

 @overloaded
 def get(self, query: Query):
 ...

 @overloads(get)
 def get(self, id, model):
 ...

Why use overloading instead of *args / **kwargs?

		Explicit function signatures

		No more mechanical argument validation and error throwing in the function body

		Clean way of handling different behaviors in separate functions

Why use overloading instead of functions with different names?

		The calling code does not need to depend on argument types.

		The name of the function may not always be chosen freely. For example, you may want to instantiate a class based on a variable set of arguments — but there is only one __init__.

		Sometimes you just want to expose a single function, particularly when separate names don’t add semantic value.

Consider:

def feed(creature:Human):
 ...
def feed(creature:Dog):
 ...

vs:

def feed_human(human):
 ...
def feed_dog(dog):
 ...

Installation

pip install overloading

Usage

Basics

Use the overloaded and overloads decorators to register multiple implementations of a function. All variants must differ by parameter type or count. Argument types are specified as annotations [https://www.python.org/dev/peps/pep-3107/].

from overloading import *

@overloaded
def f():
 return 'no args'

@overloads(f)
def f(foo):
 return 'one arg of any type'

@overloads(f)
def f(foo:int, bar:int):
 return 'two ints'

>>> f()
'no args'
>>> f('hello')
'one arg of any type'
>>> f('hello', 42)
TypeError: Invalid type or number of arguments when calling 'f'.

Keyword arguments can be used as normal:

>>> f(foo=1, bar=2)
'two ints'

Setting a default handler

One of the functions can be designated as a fallback that will be called in case a match is not found. This is done by including the catch-all variable for positional arguments (*args).

Continuing with the previous example:

@overloads(f)
def f(*args, **kwargs):
 return 'default'

>>> f('hello', 42)
'default'

The default handler may specify required parameters as well. For instance, to accept an arbitrary number of positional arguments while continuing to enforce the requirement that the first two must be integers:

@overloads(f)
def f(foo:int, bar:int, *args):
 return 'default'

>>> f(1, 2)
'two ints'
>>> f(1, 2, 3)
'default'

Argument polymorphism

Subclass instances will satisfy type specifications as one would expect:

class Animal: ...
class Dog(Animal): ...

@overloads(f)
def f(creature:Animal):
 return 123

>>> f(Animal())
123
>>> f(Dog())
123

The system does not depend on concrete inheritance, so abstract base classes such as collections.Iterable are supported too (but there is a limitation on this).

Other decorators

The overloading system can be used together with other decorators, but remember to use functools.wraps() so that the module can find the inner function. The order in which the decorators are applied generally does not matter (classmethods and staticmethods are a notable exception; see below).

Usage with classes

Everything works the same when overloading methods on classes:

class C:

 @overloaded
 def __init__(self):
 ...

 @overloads(__init__)
 def __init__(self, foo:list):
 ...

Classmethods and staticmethods must be defined by wrapping an already-overloaded function — i.e., by using an outer decorator:

class C:

 @classmethod
 @overloaded
 def f(cls):
 ...

Inheritance works as expected, but it is not yet possible to override an already-registered method signature in a subclass.

When adding implementations to a subclass, remember to refer to the dispatcher that is defined in the parent class:

class C:
 @overloaded
 def f(self, foo, bar):
 ...

class S(C):
 @overloads(C.f) # Note `C.f` here.
 def f(self, foo, bar, baz):
 ...

Function ordering and naming

The individual functions can be defined in any order. However, the first function (wrapped with the initial overloaded decorator) establishes the shared name by which the overloaded function is invoked.

The names of the subsequent functions are of no importance. They can share the invocation name, have unique names, or be bound to a dummy name to avoid repetition:

@overloaded
def long_function_name(*args):
 ...

@overloads(long_function_name)
def _(arg1:list, arg2:int):
 ...

@overloads(long_function_name)
def _(arg1:dict, arg2:int):
 ...

Hooks for shared code

Code that should be executed no matter which implementation is called can be placed in functions labeled with the identifiers 'before' and 'after'. They are particularly useful in connection with __init__ methods.

@overloaded
def f(foo):
 ...

@overloads(f)
def g(foo, bar):
 ...

@overloads(f, 'before')
def pre(*args):
 ...

@overloads(f, 'after')
def post(*args):
 ...

The call f(1, 2) would now be equivalent to pre(1, 2); g(1, 2); post(1, 2);.

Details

The dispatching logic is intended to be robust with no surprises. The resolution algorithm is designed so that the most specific match can always be uniquely determined. This means that

		there is no need to look out for cases where multiple functions might provide an equally good match to a set of arguments

		the function definition order does not affect the outcome.

Function signatures are validated at registration time to ensure that an ambiguous situation can never arise at runtime. Specifically, the sequence of required parameters must form a unique signature.

For example, attempting the following definitions will raise an error because bar, although it varies on type, is not a required parameter and therefore not considered part of the identifying signature.

@overloaded
def f(foo, bar:int=100):
 ...

@overloads(f)
def f(foo, bar:str=None):
 ...

If the above code was allowed, it would be impossible to decide on the intended function when f is called with only one argument.

There is one exception to the signature uniqueness requirement. The default implementation is allowed to have a signature that also appears elsewhere. Thus, f() and f(*args) are permitted at the same time. To prevent conflicts, the default function takes a lower priority when needed.

Resolution rules

The best match between a set of arguments and a group of function signatures is resolved by applying the following rules until a single function remains:

		Filter out any functions that cause a mismatch based on argument type, count, or name.

		Pick the function that accepts the most arguments to fill its regular parameter slots.

		Pick the function whose signature matches the most arguments in terms of types (as opposed to arguments that match because any type is allowed).

		Pick the function with the greatest number of exact matches in the previous step (as opposed to matches due to subtyping).

		Pick the function that, in terms of parameter order, is the first to provide a better type match than competing functions.

		Pick the function whose signature contains the greatest number of required parameters.

		Pick the function that is not the default implementation.

Errors

The module will raise an OverloadingError if something goes wrong while the functions are being registered, with the intention that no avoidable errors would have to be raised at invocation time.

More on naming

If the individual functions are given distinct names, they can also be called directly (except the first one). A direct call will bypass the overloading mechanism, since the dispatcher is bound to the invocation name only.

@overloaded
def f(foo:str):
 return 'expects string'

@overloads(f)
def g(foo:int):
 return 'expects integer'

>>> f(100)
'expects integer'
>>> f('hello')
'expects string'
>>> g('hello') # Bypass dispatcher and call `g` regardless of arg type.
'expects integer'

[bookmark: mro]More on argument polymorphism and function validation

There is a caveat regarding parameter subtyping. During argument matching, the ranking of candidate functions according to type specificity depends on the classes’ inheritance hierarchies (MROs). However, an argument value may be considered an instance of a class even if the MRO does not actually include the class. This is the case with, e.g., abstract base classes.

In practical terms, the matching algorithm is unable to tell whether Iterable or Mapping should be considered a better match for a dict instance. Although in this case the answer is obvious, there is no general solution for classes whose metaclasses implement their own __instancecheck__ methods. It is perfectly possible for a value to be considered an instance of two classes that fail a subclass check against each other.

To guard against this, the function validator requires that two different abstract base classes may not occupy the same parameter position on two different functions. For instance, you may not have Iterable as the first type in one function and Mapping in another.

This restriction may be relaxed in the future. A system of abstract base classes that has a consistent derivation hierarchy will be acceptable once the validation and matching algorithms gain the ability to recognize and deal with them.

A note on parameters

There are no restrictions on the kinds of parameters a function signature may contain. However, the argument matching algorithm only examines regular parameters (those before * or *args if present). In other words, arguments consumed by catch-all variables or Py3-style keyword-only parameters do not count towards match quality.

Advanced example: Optional parameters

Even though optional parameters are ignored when assessing signature uniqueness, they do matter at invocation time when the actual argument matching is carried out.

@overloaded
def f(*args):
 return 'f'

@overloads(f)
def g(foo, bar, baz=None):
 return 'g'

@overloads(f)
def h(foo, bar=None, baz:int=None):
 return 'h'

@overloads(f)
def i(foo=None, bar=None, baz=None, **kwargs):
 return 'i'

>>> f()
'i'
>>> f(100)
'h'
>>> f(100, 200)
'g'
>>> f(100, 200, 'a')
'g'
>>> f(100, 200, 300)
'h'
>>> f(100, 200, quux=1)
'i'

Above, f(100) resolved to h(100) because, other things equal, a signature with fewer optional parameters is considered to be more specific. However, if i were defined as

def i(foo:int=None, bar=None, baz=None, **kwargs): ...

then f(100) would resolve to i(100) instead. This is because a type-based match always takes precedence.

Advanced example: Argument subtyping

Consider a case like this:

class Animal: ...
class Dog(Animal): ...

class Vehicle: ...
class Car(Vehicle): ...

@overloaded
def f(number:int, creature:Dog, thing:Vehicle):
 ...

@overloads(f)
def f(number:int, creature:Animal, thing:Car):
 ...

>>> f(1, Dog(), Car())

The function call would seem to result in an equally explicit match with regard to both functions; two of the argument types match exactly and one due to inheritance. The resolution rules address this by directing that the first parameter to produce a ranking will determine the winner. Therefore, in this case, the first function would be chosen, as it provides the best match after the second parameter has been evaluated.

This principle does not depend on exact matches. To illustrate:

class Retriever(Dog): ...
class Sedan(Car): ...

>>> f(1, Retriever(), Sedan())

The first function will again be chosen. Retriever is closer to Dog than to Animal in the type hierarchy, and thus Dog represents a better match at the second position.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/plus.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		overloading stable documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/file.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/comment.png

